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Linkage Disequilibrium Mapping via Cladistic Analysis of Single-Nucleotide
Polymorphism Haplotypes
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We present a novel approach to disease-gene mapping via cladistic analysis of single-nucleotide polymorphism
(SNP) haplotypes obtained from large-scale, population-based association studies, applicable to whole-genome
screens, candidate-gene studies, or fine-scale mapping. Clades of haplotypes are tested for association with disease,
exploiting the expected similarity of chromosomes with recent shared ancestry in the region flanking the disease
gene. The method is developed in a logistic-regression framework and can easily incorporate covariates such as
environmental risk factors or additional unlinked loci to allow for population structure. To evaluate the power of
this approach to detect disease-marker association, we have developed a simulation algorithm to generate high-
density SNP data with short-range linkage disequilibrium based on empirical patterns of haplotype diversity. The
results of the simulation study highlight substantial gains in power over single-locus tests for a wide range of disease
models, despite overcorrection for multiple testing.

Introduction

Disease-marker association studies of samples of unre-
lated affected cases and unaffected controls have been
widely recognized as having the potential to map genetic
polymorphisms contributing to complex traits, provided
that the variant is not extremely rare (Risch and Meri-
kangas 1996; Zondervan and Cardon 2004). With the
publication of the SNP map of the human genome (In-
ternational SNP Map Working Group 2001; Interna-
tional Human Genome Sequence Consortium 2001) and
improvements in the efficiency of high-throughput ge-
notyping technology, genomewide screens of high-den-
sity marker panels are becoming increasingly feasible for
large sample sizes. The success of this approach to gene
mapping now depends on the availability of powerful
statistical analysis techniques.

The key concept underlying any analysis of disease-
marker association studies is linkage disequilibrium (LD),
the nonrandom assortment of alleles at loci within pop-
ulations of unrelated individuals, generated as a result of
their shared ancestry. Consider a disease arising as a result
of relatively recent mutations at proximal loci within the
same gene. Figure 1 illustrates an example of a genea-
logical tree used to represent the ancestry of a sample of
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chromosomes at the disease gene. A pair of disease chro-
mosomes carrying the same mutation are expected to
share a more recent common ancestor at the disease gene
than a pair of chromosomes carrying different mutations.
Moreover, the most recent common ancestor (MRCA)
at the disease gene of mutation-free normal chromosomes
is expected to be more ancient than the founders for any
specific disease mutation event.

At the instant a specific disease mutation occurs, it is
carried on a single founding haplotype and is in com-
plete LD with alleles at any other SNP. Over subsequent
generations, recombination will break down the foun-
der haplotype, weakening LD with the disease mutation.
However, with high-density maps of markers, the prob-
ability of recombination between the disease gene and
neighboring SNPs is small. Thus, the founder haplotype
is expected to be preserved in the vicinity of the disease
gene on chromosomes carrying the mutation. A mis-
match of alleles within the preserved region can occur
only as a result of marker mutation.

The same representation could be applied to normal
chromosomes. However, recombination is expected to
have broken down LD in normal chromosomes even in
the region directly flanking the disease gene, because
their MRCA is more ancient than for disease chromo-
somes. Consequently, a sample of disease chromosomes
is expected to display excess sharing of the founder SNP
haplotype(s) over normal chromosomes, with the excess
decaying with distance from the disease gene. This rep-
resentation assumes low-risk alleles to be ancient and
thus precludes recent mutations with protective effects,
for example.
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Figure 1 Example of a genealogical tree representing the shared
ancestry of chromosomes at the disease gene. Disease chromosomes (D)
carrying the same mutation (1 or 2), share more recent common ancestry
than normal chromosomes (N) carrying no mutation (0).

Unfortunately, this simple model of LD is unrealistic
for marker association with complex diseases. Environ-
mental factors, dominance, polygenic effects, and epi-
stasis will affect the relative frequencies of sporadic
normal chromosomes carried by affected cases and non-
penetrant disease chromosomes carried by unaffected
controls, introducing substantial noise in the relation-
ship between disease phenotype and genotype. Further,
false-positive signals of disease-marker association can
occur at an increased rate as a result of population sub-
structure that is not accounted for in the ascertainment
process. The challenge for the analysis of disease-marker
association studies is to develop methodology that can
efficiently detect LD resulting from the common ances-
try of specific disease mutations in a complex genetic
setting and can differentiate between it and SNP hap-
lotype sharing due to background patterns of associa-
tion generated by the underlying demographic structure.

In this article, we present a novel approach to disease-
gene mapping via cladistic analysis of SNP haplotypes
obtained from large-scale population-based association
studies. Large genomic regions are treated as sliding win-
dows of SNPs, with separate analyses performed within
each window. SNP haplotype diversity is quantified in
terms of the proportion of marker matches within the
window. Such a metric is consistent with haplotype di-
versity driven by marker mutation, in the absence of re-
combination. Hence, a window can be thought of as
corresponding to a haplotype block, with high levels of
LD between SNPs maintained by minimal ancestral re-
combination (Daly et al. 2001; Goldstein 2001; Gabriel
et al. 2002).

If we ignore disease phenotype, haplotype diversity
in each window is represented by means of a cladogram,
constructed using standard hierarchical clustering tech-
niques (Everitt 1993). In windows overlapping the re-
gion flanking the disease gene, the cladogram is ex-
pected to approximate the genealogical tree underlying
the shared ancestry of case and control chromosomes.
Consequently, we expect correlation between disease
phenotypes and clusters in the cladogram, with excess
sharing of the founder SNP haplotype(s) among the
high-risk clade(s) of chromosomes.

Our method is developed in a logistic-regression
framework that can be generalized to incorporate co-
variates, which might include potential environmental
risk factors or genotypes at additional unlinked markers
to control for population structure (Pritchard and Ro-
senberg 1999). We demonstrate the power of this ap-
proach by simulation of high-density SNP data, on the
basis of empirical patterns of haplotype diversity across
a 10-Mb region of chromosome 20 (Ke et al. 2004),
highlighting substantial gains over single-locus tests to
detect associations for a wide range of complex disease
models.

Methods

Consider a sample of unrelated affected cases and un-
affected controls, typed for M SNPs in a region of in-
terest. We assume that phase-known genotype data are
available, where the pair of haplotypes carried by the
ith individual is denoted by , and the hap-H p {H ,H }i i1 i2

lotype . Alleles, , at SNPH p {H ,H , … ,H } Hij ij[1] ij[2] ij[M] ij[m]

m are coded 1 and 2, with 0 denoting missing data. The
relative frequency of allele 1 at SNP m is denoted as

and is estimated from the available genotype data.qm

Cladistic Representation of Haplotype Diversity

We represent haplotype diversity by means of a cla-
dogram, an example of which is presented in figure 2.
The cladogram illustrates successive partitions of SNP
haplotypes, . The first partition,T[h],T[h � 1], … ,T[1]

, consists of h clusters, each corresponding to aT[h]
group of chromosomes carrying the same distinct SNP
haplotype, represented by nodes at the foot of the cla-
dogram. Subsequent partitions merge together increas-
ingly diverse clusters of haplotypes. The final partition,

, at the top of the cladogram, combines all haplo-T[1]
types in a single cluster.

The cladogram is constructed using simple hierarchi-
cal group averaging techniques. At each partition, clus-
ters of haplotypes from the previous partition are merged
such that the mean pairwise haplotype diversity is min-
imized within the new clade. We define the diversity
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Figure 2 Example of a cladogram representing haplotype diversity within a window of SNPs. The cladogram is constructed using
hierarchical group average clustering on pairwise haplotype differences, expressed in terms of the proportion of marker mismatches within the
window of SNPs.

between a pair of haplotypes, and , by meansH Hi j i j1 1 2 2

of the distance metric

M� s wi j ,i j [m] m1 1 2 2
mp1D p 1 � ,Mi j ,i j1 1 2 2 � wm

mp1

where is the weight assigned to similarities, ,w sm i j ,i j [m]1 1 2 2

at SNP m, given by

1 � q if H p H p 1m i j [m] i j [m]1 1 2 2

q if H p H p 2m i j [m] i j [m]1 1 2 2s p .i j ,i j [m]1 1 2 2 ( )q 1 � q if H p 0 orH p 0m m i j [m] i j [m]1 1 2 2{
0 otherwise

Chromosomes that share rare alleles are expected to
share more-recent ancestry than chromosomes sharing
common alleles and thus are treated as more similar in
this definition of haplotype diversity. Thus, we quantify
allele sharing by the complementary allele frequency—
that is, by , for sharing allele 1 at SNP m, and by1 � qm

, for sharing allele 2. If allele is missing andq Hm i j [m]1 1

allele , the probability that the two haplo-H p 1i j [m]2 2

types match at SNP m is , in which case the similarityqm

score is , and, overall, . On the other1 � q q (1 � q )m m m

hand, if allele , the probability that the twoH p 2i j [m]2 2

haplotypes match at SNP m is , in which case1 � qm

the similarity score is —again, over-q q (1 � q )m m m

all. For the case in which both alleles are missing,
, the probability that the haplo-H p H p 0i j [m] i j [m]1 1 2 2

types share allele 1 at SNP m is , in which case the2qm

similarity score is . Conversely, the probability1 � qm

that the haplotypes share allele 2 at SNP m is (1 �
, in which case the similarity score is . Thus,2q ) qm m

overall, when , the similarity scoreH p H p 0i j [m] i j [m]1 1 2 2

is .2 2q (1 � q ) � q (1 � q ) p q (1 � q )m m m m m m

The simple distance metric, for all m, assignsw p 1m

equal weight to similarities at each SNP. For large ge-
nomic regions, we allow for recombination by treating
the marker panel as a sliding window, , of SNPs,W

1 if m � W
w p ,m {0 otherwise

with separate analyses performed within each overlap-
ping window. Under this model, windows of SNPs cor-
respond to blocks of strong LD, maintained by minimal
ancestral recombination—that is, haplotype diversity
driven by marker mutation.

Logistic-Regression Model

Consider the partition of haplotypes, , to c clus-T[c]
ters in window . We model the disease status ofW
individual i, denoted by for a case andy p 1 y p 0i i

for a control, in a logistic-regression framework. The
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model is parameterized in terms of log-odds of disease,
, for each cluster. We also allow[c] [c] [c] [c]b p {b ,b , … ,b }1 2 c

for covariates, denoted by for in-x p {x ,x , … ,x }i i1 i2 iK

dividual i, with corresponding regression coefficients
. Denoting the cluster assignment[c] [c] [c] [c]g p {g ,g , … ,g }1 2 K

of haplotype in partition by , the log like-H T[c] T[c]ij ij

lihood of SNP haplotypes in window is given byW

n

[c] [c]( ) ( ) ( )� yFT[c],b ,g ,x,W p y ln p � 1 � y ln 1 � p ,[ ]� i i i i
ip1

where

[ ]exp hi

p p .i [ ]1 � exp hi

Under the assumption of Hardy-Weinberg equilibrium
and a multiplicative disease model, the linear compo-
nent, , is given byhi

K

[c] [c] [c]h p b � b � g x .�i T[c] T[c] k iki1 i2
kp1

Under the null hypothesis of no association between
disease and SNPs in window , each haplotype hasW
equal odds of being carried by a case or control. This
is represented by a single cluster of haplotypes, given by
the null partition . Thus, a likelihood-ratio test ofT[1]
disease-marker association can be constructed for par-
tition ,T[c]

[c] [c] [1] [1]ˆ ˆ( ) ( )ˆˆL p 2 � yFT[c],b ,g ,x,W � � yFT[1],b ,g ,x,W ,[c] [ ]

having an approximate x2 distribution with df un-c � 1
der the null hypothesis.

For large windows of SNPs, clusters of haplotypes
may occur with low relative frequency in the sample of
case and control chromosomes. To allow for rare hap-
lotypes, we pool clusters in partition with relativeT[c]
sample frequencies !5%. In partition , we denoteT[c]
the number of clusters with relative frequencies 15% by

, so that , where denotes∗ [c] [c] [c] [c] [c] [c]c b p {b ,b , … ,b ,b } b∗1 2 c P P

the log-odds of disease for the pooled clusters of hap-
lotypes. Under the null hypothesis of no disease-marker
association, the likelihood ratio test, , for pooledL [c]P

haplotypes has an approximate x2 distribution with ∗c
df.

Moving up through the cladogram, combining in-
creasingly diverse haplotypes in fewer clusters represents
a trade-off between lack of fit of the logistic-regression

model and reduced degrees of freedom in the likelihood-
ratio test. For each window, we select the best partition
of haplotypes, , maximizing the evidence of dis-T[MAX]
ease marker association (i.e., minimizing the P value) in
the likelihood-ratio test. This procedure incorporates
two levels of multiple testing: (i) partitions of hap-tW
lotypes in the cladogram for SNPs in window andW
(ii) N overlapping windows of SNPs. To obtain an ex-
perimentwise false-positive error rate of 100 %, theaE

pointwise significance level for window , 100 %, isW aW
adjusted by Bonferroni correction, .a p a /NtW E W

Software Availability

The method has been coded in the CLADHC algo-
rithm, available as a linux executable, with accompa-
nying documentation, on request from the correspond-
ing author.

Simulation Study

In this section, we present details of a simulation study
to evaluate the performance of the proposed cladistic
analysis of SNP haplotypes as an approach to LD map-
ping. We generate case-control samples of high-density
SNP haplotypes consistent with empirical patterns of LD
across a 10-Mb region of chromosome 20, derived from
92 haplotypes obtained from CEPH pedigrees (Ke et al.
2004). We consider a range of different disease models,
under the assumption of a single high-risk variant at the
disease locus. The models are parameterized in terms of
the disease allele frequency (DAF; in the range 0.01–
0.5), and genotype relative risks (GRRs) to individuals
who are heterozygous (GRR 1–3) or homozygous (GRR
1.1–40) for the high-risk variant. These models encom-
pass a number of established gene polymorphisms with
strong evidence of association with complex diseases
from empirical studies, including NOD2 for Crohn dis-
ease (Hugot et al. 2001) and APOE for Alzheimer disease
(Rubinsztein and Easton 1999).

For each combination of disease model and DAF, we
generate 1,000 replicates of phase-known genotype data
for a sample of 1,000 cases and 1,000 controls. To
generate the SNP haplotypes carried by a case or con-
trol, we begin by selecting a SNP, x, at random from
the 5,216 markers in the chromosome 20 panel, with
minor-allele frequency approximately equal to the cho-
sen DAF. We generate the genotype at this disease locus
according to the disease model and assign one allele to
each chromosome in the pair carried by that individual.
The simulation for each chromosome is illustrated in
figure 3 and proceeds as follows:

1. Select an empirical haplotype at random for the set
of 5 SNPs .[x � 2, x � 2]

2. If the empirical haplotype carries the same allele at
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Table 1

False-Positive Error Rates of Disease-Gene Detection at the 5%
Experimentwise Significance Level, as a Function of DAF, Averaged
over Window Size and Disease Model

ANALYSIS

METHOD

FALSE-POSITIVE ERROR RATE (%)
AT A DAF OF

.01 .05 .1 .2 .5

T[MAX] 1.28 1.33 1.29 1.36 1.32
T[h] 3.03 3.03 2.85 2.94 3.13
Single locus 3.12 3.33 3.51 3.11 3.22

Table 2

False-Positive Error Rates of Disease-Gene Detection at the 5%
Experimentwise Significance Level, as a Function of Window Size
(Number of Markers), Averaged over the Disease Allele Frequency
and Disease Model

ANALYSIS

METHOD

FALSE-POSITIVE ERROR RATE (%)
AT A WINDOW SIZE OF

4
Markers

6
Markers

8
Markers

10
Markers

T[MAX] 1.73 1.38 1.13 1.01
T[h] 3.30 2.98 2.92 2.78
Single locus 3.28 3.32 3.26 3.16

the disease SNP as the simulated chromosome, ac-
cept the haplotype for the set of SNPs [x � 2, x �

. Otherwise, return to step 1.2]
3. Select an empirical haplotype at random for the set

of 5 SNPs .[x � 1, x � 3]
4. If the empirical haplotype and simulated chromo-

some match at all overlapping SNPs, accept the
haplotype for the set of 5 SNPs . Oth-[x � 1, x � 3]
erwise, return to step 3.

5. Repeat steps 3 and 4 for successive overlapping sets
of 5 SNPs, to the right[x, x � 4], [x � 1, x � 5], … ,
of the disease SNP, and then [x � 3, x � 1], [x �

to the left of the disease SNP.4, x], … ,
6. Remove disease SNP from haplotype.

The process is repeated to generate the required number
of cases and controls. By matching haplotypes in over-
lapping windows, the simulated chromosomes are not
exact copies of those in the original sample. Instead, the
92 CEPH chromosomes are used to generate plausible
haplotypes in a wider population.

For each replicate of haplotype data, we consider a
sliding window of SNPs across the candidate region.
For each window, we perform three association anal-
yses:

1. single-locus allele-based analyses using Pearson’s x2

test for contingency tables, corrected for the2 # 2
number of SNPs;

2. haplotype-based logistic-regression analysis using
the first partition of haplotypes, , correspond-T[h]
ing to one cluster for each distinct haplotype, cor-
rected for the number of windows; and

3. haplotype-based logistic-regression analysis using
the best partition of haplotypes, , cor-T[MAX]
rected for the number of windows and partitions
of haplotypes in the cladogram.

We consider windows of size 4, 6, 8, and 10 markers
and then focus on two key measures: (i) the power of
each method to detect disease-marker association in
windows overlapping the region flanking a disease gene
and (ii) the false-positive error rates of disease-gene de-
tection in windows that do not overlap the flanking

region (i.e., null windows). The SNP panel consists
of polymorphisms with an approximate uniform dis-
tribution of minor allele frequencies (MAFs). Hence, all
results below are effectively averaged over marker MAF.

To generate a single replicate of SNP genotype data
for a sample of 1,000 cases and 1,000 controls requires
∼2 min of computing time for a dedicated Pentium 3
processor. The computing time required for the analysis
of a single replicate of data using all three methods
varies according to window size: !30 s for a window
of size 4, !1 min for a window of size 8, and !3 min
for a window of size 10.

Results

Table 1 presents the false-positive (type I) error rates
of disease-gene detection in null windows at the 5%
experimentwise significance level, for the three associ-
ation analysis methods, as a function of the DAF, av-
eraged over window size and disease model. For each
analysis method, the Bonferroni correction is conser-
vative. The best partition of haplotypes, , isT[MAX]
most conservative, presumably because this test requires
two levels of correction: for the number of windows and
for the number of partitions in the cladogram. Table 2
presents the false-positive error rates of disease-gene de-
tection in null windows at the same experimentwise sig-
nificance level, this time as a function of window size,
averaged over the DAF and disease model. DAF and
disease model have no apparent effect on false-positive
rates (results not presented), since we focus here on null
windows that do not overlap the disease gene. However,
the haplotype-based tests become increasingly conser-
vative with longer window size. Longer windows con-
tain greater haplotype diversity, with larger numbers of
degrees of freedom in the test at the first partition of
haplotypes, , and additional correction for increasedT[h]
levels of clustering in the cladogram for the test at the
best partition of haplotypes, .T[MAX]

Figure 4 presents the power to detect disease-marker
association in windows of 8 markers overlapping the
region flanking a disease gene, under the assumption of
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Figure 3 Generating the SNP haplotype carried by a chromo-
some carrying allele 1 at the disease SNP, x.

Figure 4 Power to detect disease-marker association in windows of 8 markers overlapping the region flanking a disease gene, under the
assumption of a 5% experimentwise significance level, with Bonferroni correction for multiple testing. Power is presented as a function of the
disease model, for a disease allele frequency of 0.05. The three analysis methods are the best partition of haplotypes, ; the first partitionT[MAX]
of haplotypes, ; and a single-locus test.T[h]

a 5% experimentwise significance level, with Bonferroni
correction for multiple testing. Power is presented for
each of the three analysis methods as a function of the
disease model, for a DAF of 0.05. The power of both
haplotype-based methods, and , is sub-T[MAX] T[h]
stantially greater than the single-locus test. This trend is
repeated over different DAFs (results not presented). The
greatest power for all three methods is attained for the
most common disease alleles, since, for common vari-
ants, the proportion of affected individuals carrying two

copies of the disease allele is greatest. The best partition
of haplotypes, , generally has greater power toT[MAX]
detect disease-marker association than the first partition
of haplotypes, . This suggests the positive benefitsT[h]
of reduced degrees of freedom in a trade-off against cor-
rection for the additional levels of multiple testing.

Figure 5 presents the power of the best partition of
haplotypes, , to detect disease-marker associa-T[MAX]
tion in windows of varying size overlapping the disease
gene, under the assumption of a 5% experimentwise sig-
nificance level, with Bonferroni correction for multiple
testing. Power is presented as a function of the disease
model, for a DAF of 0.05. For each model, a window of
size 6 is most powerful, with decreasing power obtained
for windows of 8 and then 10 markers. For windows
consisting of 16 markers, the correction for additional
partitions in the cladogram, because of increased haplo-
type diversity, overwhelms the extra information about
LD. In general, smaller windows have greater power rel-
ative to longer windows, for higher DAFs, which is con-
sistent with our expectation that LD will not extend as
far for older alleles.

For the simulation study, a window of size 6 is optimal
by averaging over the whole 10-Mb region. However,
the optimal window size will vary according to the den-
sity of marker SNPs and the extent of LD across the
region under investigation. For example, in regions of
low LD, we expect high levels of haplotype diversity and,
hence, that a small window will be optimal. One ap-
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Figure 5 Power of the best partition of haplotypes, , to detect disease-marker association in windows of varying size (numbersT[MAX]
of markers) overlapping the disease gene, under the assumption of a 5% experimentwise significance level, with Bonferroni correction for
multiple testing. Power is presented as a function of the disease model, for a disease allele frequency of 0.05.

Figure 6 Distribution of single-marker association with CF
across a 1.8-Mb candidate region flanking the CFTR gene (Kerem et
al. 1989). The solid vertical line indicates the true location of DF508
at 0.88 Mb, the most common disease mutation identified in the CFTR
gene. The dashed line indicates the distribution of association with CF
of the best partition of haplotypes, , using a sliding windowT[MAX]
of 6 markers across the candidate region.

proach to overcoming this problem would be to align
windows with blocks of LD, through use of data from
the International HapMap project (International Hap-
Map Consortium 2003).

Example Application: Fine-Scale Mapping

Cystic fibrosis (CF) is the most common fully penetrant
recessive disorder in white populations, with an inci-
dence on the order of 1 case per 2,500 live births. The
disease is well understood, and a single functional gene,
CFTR, has been located on chromosome 7q31. It is now
known that a 3-bp deletion, DF508, in the CFTR gene
accounts for ∼66% of chromosomal mutations in the
same gene (Bertranpetit and Calafell 1996). Kerem et al.
(1989) typed 94 case chromosomes and 92 control chro-
mosomes at 23 diallelic markers in a 1.8-Mb region
including the CFTR gene. The sample incorporates ge-
netic heterogeneity at the CFTR locus, since only 62 of
the case chromosomes carry DF508. Consequently, the
resulting haplotype data have become a useful test set
for fine-mapping methods, reviewed by Morris et al.
(2002).

Figure 6 presents the distribution of values� log P10

across the candidate region from single-locus allele-
based analyses using Pearson’s x2 test for 2 # 2 con-
tingency tables. The true location of DF508 is at 0.88
Mb, indicated by the solid vertical line. There is a region
of strong LD at 0.6–0.9 Mb, although the closest

marker to DF508 shows little evidence of association.
We have analyzed the region through use of a sliding
window of 6 markers and have tested for disease-
marker association for the best partition of haplotypes,

, within each window. Figure 6 also presentsT[MAX]
the values from these analyses, plotted against� log P10
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Table 3

Best Partition of Haplotypes and Corresponding ORs
for Cystic Fibrosis for the Data from Kerem et al.
(1989)

Cluster and
Haplotype

No. of
Cases

No. of
Controls OR (95% CI)

1:
212111 8 40

1 (baseline)212011 0 4
212112 2 0

2:
121121 61 3

96.8 (25.2–371.7)
121021 5 0

3:
112221 10 16

2.4 (0.9–6.6)
112211 1 2
212221 0 1
112222 0 1

4:
112011 0 4

1.3 (.2–7.0)
112111 2 3

5:
121122 1 5

.6 (.06–4.9)121022 0 2
121222 0 1

Pooleda:
121100 2 1

1.8 (.5–6.8)

000100 2 2
121111 0 2
212121 0 1
112021 0 1
122221 0 1
222011 0 1
221111 0 1

a The pooled cluster includes all clusters with fre-
quency !5%.

the location of the center of the window. All locations
are highly significant, adjusting for the number of win-
dows and partitions of haplotypes. The strongest evi-
dence of association was obtained for the window of
markers centered at 0.879 Mb, just 1 kb from the true
location of DF508. Similar results were obtained for
windows of 4, 8, and 10 markers, with a similar region
identified with maximal evidence of disease-marker
association.

Table 3 presents the best partition of haplotypes,
, in the 6-marker window of strongest asso-T[MAX]

ciation, together with the corresponding odds ratios
(ORs) for CF, when the cluster with the highest fre-
quency of controls is taken as baseline. Cluster 2 has
the highest odds of CF and includes 66 case chromo-
somes, the majority of which carry the DF508 mutation.
The remainder of the case chromosomes are scattered
across the other five clusters and carry rarer CF mu-
tations, each of which would be expected to have oc-
curred on a different marker haplotype background.

Discussion

We present a novel method for disease-gene mapping
using SNP haplotypes obtained from large-scale popu-
lation-based association studies. In the vicinity of the
disease gene, we expect that a cladistic representation of
haplotype diversity, constructed using standard hierar-
chical clustering techniques on a simple pairwise distance
metric, will approximate the ancestry of the sample. The
cladogram highlights clusters of similar haplotypes that
we expect to have similar contributions to the risk of
disease. The method is applicable to the analysis of
whole-genome screens, candidate genes, or fine-scale
mapping.

We have developed a simulation algorithm to generate
high-density SNP data with short-range LD based on
empirical patterns of haplotype diversity. The algorithm
uses relatively small samples of chromosomes typed on
a high-density SNP panel to simulate plausible haplotypes
in a wider population, allowing for the much larger sam-
ple sizes required for case-control studies of complex dis-
ease. The results of our simulation study suggest that
cladistic analysis of haplotypes is substantially more pow-
erful than single-locus methods. There are also gains in
power attained by partitioning haplotypes according to
their similarity, compared with the less parsimonious ap-
proach of allowing a different risk for each distinct hap-
lotype, despite the need for correcting for the additional
levels of multiple testing. The Bonferroni correction is
conservative, so we might expect further improvements
in power with more appropriate adjustments for multiple
testing, such as false-discovery rates. Alternatively, the
computational efficiency of the algorithm means that we
could employ a permutation procedure to obtain the ex-
act distribution of under the null hypothesis of noL[MAX]

disease-marker association.
In our simulation study, we assume a single high-risk

disease variant, which may not be entirely realistic for
many complex diseases. The simulation algorithm could
be adapted to allow for multiple mutations at proximal
loci (i.e., within the same disease gene) or at distant loci
(i.e., in different disease genes). We would expect the
cladistic method to perform well in the former setting,
since each disease mutation should correspond to a dif-
ferent clade of high-risk haplotypes. In the latter case,
power to detect disease-marker association will depend
on the main effects of each mutation to disease risk,
since we do not model interactions between disease loci.

In our method, we assume that haplotype diversity
is driven by marker mutation in the absence of recom-
bination and thus is quantified in terms of the propor-
tion of markers at which a pair of haplotypes are iden-
tical. To allow for recombination, we make use of
sliding windows of SNPs across the marker panel, with
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separate analyses performed within each window. How-
ever, to allow for recombination within a window, we
could weight marker matches according to a linear or
exponential function of distance from the center of the
haplotype. Molitor et al. (2003a) discuss a number of
other alternative distance metrics.

In the method presented here, we assume that we have
phase-known haplotype data, which will not generally
be available with current SNP genotyping technology.
We can estimate the haplotype configuration of phase-
unknown genotype data through use of statistical in-
ference methods such as PHASE (Stephens et al. 2001;
Stephens and Donnelly 2003). However, it is important
to account for uncertainty in the haplotype reconstruc-
tion, which is an estimate and subject to error. Alter-
natively, we could focus on genotype diversity directly,
without the need for haplotype information.

Molitor et al. (2003b) have proposed a promising
approach to gene mapping, based on clustering hap-
lotypes under a Bayesian partition model. They allow
for missing marker data and uncertainty in the partition
in a Markov chain Monte Carlo (MCMC) framework.
This approach would be straightforward to adapt to
phase-unknown genotype data, treating the unknown
haplotypes as latent variables in the MCMC algorithm.
However, MCMC methods are computationally inten-
sive and, although this approach may be viable for
analysis of candidate genes or small genomic regions,
it is not clear that it could be adapted to whole-genome
screens.
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